The emergence of network structure, complementarity and convergence from basic ecological and genetic processes
نویسندگان
چکیده
Plant-animal mutualistic networks are highly diverse and structured. This has been explained by coevolution through niche based processes. However, this explanation is only warranted if neutral processes (e.g. limited dispersal, genetic and ecological drift) cannot explain these patterns. Here we present a spatially explicit model based on explicit genetics and quantitative traits to study the connection between genome evolution, speciation and plant-animal network demography. We consider simple processes for the speciation dynamics of plant-animal mutualisms: ecological (dispersal, demography) and genetic processes (mutation, recombination, drift) and morphological constraints (matching of quantitative trait) for species interactions, particularly mating. We find the evolution of trait convergence and complementarity and topological features observed in real plant-animal mutualistic webs (i.e. nestedness and centrality). Furthermore, the morphological constraint for plant reproduction generates higher centrality among plant individuals (and species) than in animals, consistent with observations. We argue that simple processes are able to reproduce some well known ecological and evolutionary patterns of plant-animal mutualistic webs.
منابع مشابه
Modeling gene regulatory networks: Classical models, optimal perturbation for identification of network
Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption. On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications. This is not an unrealistic goal since genes which are regulated by gene regulatory ...
متن کاملApplication of Ecological Theory to Management of Arid Drylands: An Example from China
Rangeland ecosystems shift across dynamic thresholds between differentecological states in response to natural or human-induced factors. These differentecological states are the result of interactions among climate, soils, grazing history,and management practices. The notion of a single ‘‘pristine’’ final state is onlyconceptual in nature, and because of this, dynamic thresholds and the effects...
متن کاملRisks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach
Risks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach Nowadays, environmental risk assessment has been defined as one of the effective in environmental planning and policy making. Considering the position and structure of vegetation on the forest floor, the main role of forest under ca...
متن کاملThe congruence between matrilineal genetic (mtDNA) and geographic diversity of Iranians and the territorial populations
Objective(s):From the ancient era, emergence of Agriculture in the connecting region of Mesopotamia and the Iranian plateau at the foothills of the Zagros Mountains, made Iranian gene pool as an important source of populating the region. It has differentiated the population spread and different language groups. In order to trace the maternal genetic affinity between Iranians and other populatio...
متن کامل(Measuring System Entropy Generation in a Complex Economic Network (The Case of Iran
An economic system is comprised of different primary flows that can be captured in macroeconomic models with complex network relations. Theoretically and empirically in this system, weak substitution or complementarity of environmental materials, like energy and other production factors such as capital, is undeniable. This is an effective critique on neoclassical economics. In this paper, we vi...
متن کامل